Referenties
Aı̈meur, E., Amri, S., & Brassard, G. (2023). Fake news,
disinformation and misinformation in social media: A review. Social
Network Analysis and Mining, 13(1), 30.
Akata, Z., Balliet, D., De Rijke, M., Dignum, F., Dignum, V., Eiben, G.,
Fokkens, A., Grossi, D., Hindriks, K., Hoos, H., et al. (2020). A
research agenda for hybrid intelligence: Augmenting human intellect with
collaborative, adaptive, responsible, and explainable artificial
intelligence. Computer, 53(8), 18–28.
Amari, S. (1967). A theory of adaptive pattern classifiers. IEEE
Transactions on Electronic Computers, 3, 299–307.
Arrieta, A. B., Dı́az-Rodrı́guez, N., Del Ser, J., Bennetot, A., Tabik,
S., Barbado, A., Garcı́a, S., Gil-López, S., Molina, D., Benjamins, R.,
et al. (2020). Explainable artificial intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI.
Information Fusion, 58, 82–115.
Azevedo, A., & Santos, M. F. (2008). KDD, SEMMA and CRISP-DM: A
parallel overview. IADS-DM.
Barbudo, R., Ventura, S., & Romero, J. R. (2023). Eight years of
AutoML: Categorisation, review and trends. Knowledge and Information
Systems, 65(12), 5097–5149.
Bird, C., Ungless, E., & Kasirzadeh, A. (2023). Typology of risks of
generative text-to-image models. Proceedings of the 2023 AAAI/ACM
Conference on AI, Ethics, and Society, 396–410.
Borys, K., Schmitt, Y. A., Nauta, M., Seifert, C., Krämer, N.,
Friedrich, C. M., & Nensa, F. (2023). Explainable ai in medical
imaging: An overview for clinical practitioners–saliency-based xai
approaches. European Journal of Radiology, 162,
110787.
Bostrom, N. (2015). Superintelligence: Paths, dangers,
strategies. Oxford University Press.
Bostrom, N. (2020). Ethical issues in advanced artificial intelligence.
Machine Ethics and Robot Ethics, 69–75.
Brandtzaeg, P. B., Skjuve, M., & Følstad, A. (2022). My AI friend:
How users of a social chatbot understand their human–AI friendship.
Human Communication Research, 48(3), 404–429.
Brauner, P., Hick, A., Philipsen, R., & Ziefle, M. (2023). What does
the public think about artificial intelligence?—a criticality map to
understand bias in the public perception of AI. Frontiers in
Computer Science, 5, 1113903.
Buchanan, B. G. (2005). A (very) brief history of artificial
intelligence. AI Magazine, 26(4), 53–60.
Buchanan, B. G., & Smith, R. G. (1988). Fundamentals of expert
systems. Annual Review of Computer Science, 3(1),
23–58.
Campbell, M., Hoane Jr, A. J., & Hsu, F. (2002). Deep blue.
Artificial Intelligence, 134(1-2), 57–83.
Carretero, S., Vuorikari, R., & Punie, Y. (2017). DigComp 2.1.
The Digital Competence Framework for Citizens. With Eight
Proficiency Levels and Examples of Use. Publications Office of the
European Union.
Cave, S., & Dihal, K. (2019). Hopes and fears for intelligent
machines in fiction and reality. Nature Machine Intelligence,
1(2), 74–78.
Chalmers, D. J. (2016). The singularity: A philosophical analysis.
Science Fiction and Philosophy: From Time Travel to
Superintelligence, 171–224.
Choudhary, T., Mishra, V., Goswami, A., & Sarangapani, J. (2020). A
comprehensive survey on model compression and acceleration.
Artificial Intelligence Review, 53, 5113–5155.
Chrisley, R. (2003). Embodied artificial intelligence. Artificial
Intelligence, 149(1), 131–150.
Chu, X., Ilyas, I. F., Krishnan, S., & Wang, J. (2016). Data
cleaning: Overview and emerging challenges. Proceedings of the 2016
International Conference on Management of Data, 2201–2206.
Cole, D. (2004). The Chinese Room Argument. In The
Stanford encyclopedia of philosophy. https://plato.stanford.edu/entries/chinese-room/;
Metaphysics Research Lab, Stanford University.
Copeland, B. (2024a). Alan turing. https://www.britannica.com/biography/Alan-Turing
Copeland, B. (2024b). History of artificial intelligence (AI).
https://www.britannica.com/science/history-of-artificial-intelligence
Darrach, B. (1970). Meet shaky, the first electronic person.
Life, November, 58–68.
Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., & Zomaya, A. Y.
(2020). Edge intelligence: The confluence of edge computing and
artificial intelligence. IEEE Internet of Things Journal,
7(8), 7457–7469.
Dennett, D. (2017). From bacteria to bach and back: The evolution of
minds. W. W. Norton & Company.
Dignum, V. (2019). Responsible artificial intelligence: How to
develop and use AI in a responsible way (Vol. 2156). Springer.
Dı́az-Rodrı́guez, N., Del Ser, J., Coeckelbergh, M., Prado, M. L. de,
Herrera-Viedma, E., & Herrera, F. (2023). Connecting the dots in
trustworthy artificial intelligence: From AI principles, ethics, and key
requirements to responsible AI systems and regulation. Information
Fusion, 99, 101896.
Dorrestijn, S. (2012). The product impact tool. Design for Usability
Methods & Tools, 111–119.
Dorrestijn, S. (2024). Ethiek & technologie, maar dan praktisch.
Met bijdragen van de leden van het saxion lectoraat ethiek &
technologie. Ethiek & Technologie, Saxion University of Applied
Sciences, Deventer. https://doi.org/10.5281/zenodo.12683806
Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R., Patel, P., Qian,
B., Wen, Z., Shah, T., Morgan, G., et al. (2023). Explainable AI (XAI):
Core ideas, techniques, and solutions. ACM Computing Surveys,
55(9), 1–33.
Elkins, K., & Chun, J. (2020). Can GPT-3 pass a writer’s turing
test? Journal of Cultural Analytics, 5(2).
Fast, E., & Horvitz, E. (2017). Long-term trends in the public
perception of artificial intelligence. Proceedings of the AAAI
Conference on Artificial Intelligence, 31.
Frické, M. (2019). The knowledge pyramid: The DIKW hierarchy. Ko
Knowledge Organization, 46(1), 33–46.
Fuegi, J., & Francis, J. (2003). Lovelace & babbage and the
creation of the 1843 “notes.” IEEE Annals of the
History of Computing, 25(4), 16–26.
Gartner, Inc. (21 August 2024). Gartner 2024 hype cycle for emerging
technologies highlights developer productivity, total experience, AI and
security. https://www.gartner.com/en/newsroom/press-releases/2024-08-21-gartner-2024-hype-cycle-for-emerging-technologies-highlights-developer-productivity-total-experience-ai-and-security.
Good, I. J. (1966). Speculations concerning the first ultraintelligent
machine. In Advances in computers (Vol. 6, pp. 31–88).
Elsevier.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., & Bengio, Y. (2014). Generative
adversarial nets. Advances in Neural Information Processing
Systems, 27.
Gu, J. (2024). Responsible generative ai: What to generate and what not.
arXiv Preprint arXiv:2404.05783.
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F.,
& Pedreschi, D. (2018). A survey of methods for explaining black box
models. ACM Computing Surveys (CSUR), 51(5), 1–42.
He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the
state-of-the-art. Knowledge-Based Systems, 212,
106622.
Heckerman, D. (1998). A tutorial on learning with bayesian networks.
Learning in Graphical Models, 301–354.
Hofstadter, D. R. (1999). Gödel, escher, bach: An
eternal golden braid. Basic books.
Hospedales, T., Antoniou, A., Micaelli, P., & Storkey, A. (2021).
Meta-learning in neural networks: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(9),
5149–5169.
Huxley, J. (2015). Transhumanism. Ethics in Progress,
6(1), 12–16.
IEEE Spectrum. (2008). Tech luminaries address singularity. https://spectrum-ieee-org.saxion.idm.oclc.org/tech-luminaries-address-singularity.
Ji, S., Pan, S., Cambria, E., Marttinen, P., & Philip, S. Y. (2021).
A survey on knowledge graphs: Representation, acquisition, and
applications. IEEE Transactions on Neural Networks and Learning
Systems, 33(2), 494–514.
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of
AI ethics guidelines. Nature Machine Intelligence,
1(9), 389–399.
Jones, C. R., & Bergen, B. K. (2024). People cannot distinguish
GPT-4 from a human in a turing test. arXiv Preprint
arXiv:2405.08007.
Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996).
Reinforcement learning: A survey. Journal of Artificial Intelligence
Research, 4, 237–285.
Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019).
Automated algorithm selection: Survey and perspectives. Evolutionary
Computation, 27(1), 3–45.
Kraus, M., Fuchs, J., Sommer, B., Klein, K., Engelke, U., Keim, D.,
& Schreiber, F. (2022). Immersive analytics with abstract 3D
visualizations: A survey. Computer Graphics Forum, 41,
201–229.
Kreuzberger, D., Kühl, N., & Hirschl, S. (2023). Machine learning
operations (mlops): Overview, definition, and architecture. IEEE
Access, 11, 31866–31879.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. Advances in
Neural Information Processing Systems, 25.
Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2023). Artificial
intelligence in disease diagnosis: A systematic literature review,
synthesizing framework and future research agenda. Journal of
Ambient Intelligence and Humanized Computing, 14(7),
8459–8486.
Kurzweil, R. (2005). The singularity is near. In Ethics and emerging
technologies (pp. 393–406). Springer.
Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M.
(2014). Industry 4.0. Business & Information Systems
Engineering, 6, 239–242.
LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.
Nature, 521(7553), 436–444.
LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J.,
Drucker, H., Guyon, I., Muller, U., Sackinger, E., et al. (1995).
Comparison of learning algorithms for handwritten digit recognition.
International Conference on Artificial Neural Networks,
60, 53–60.
Lee, E. A. (2020). The coevolution: The entwined futures of humans
and machines. Mit Press.
Li, C., Gan, Z., Yang, Z., Yang, J., Li, L., Wang, L., Gao, J., et al.
(2024). Multimodal foundation models: From specialists to
general-purpose assistants. Foundations and Trends in
Computer Graphics and Vision, 16(1-2), 1–214.
Liu, B. (2021). "Weak AI" is likely to never become "strong AI", so what
is its greatest value for us? arXiv Preprint arXiv:2103.15294.
Liu, Y., Zhang, K., Li, Y., Yan, Z., Gao, C., Chen, R., Yuan, Z., Huang,
Y., Sun, H., Gao, J., et al. (2024). Sora: A review on background,
technology, limitations, and opportunities of large vision models.
arXiv Preprint arXiv:2402.17177.
Luccioni, S., Jernite, Y., & Strubell, E. (2024). Power hungry
processing: Watts driving the cost of AI deployment? The 2024 ACM
Conference on Fairness, Accountability, and Transparency, 85–99.
Macal, C. M. (2016). Everything you need to know about agent-based
modelling and simulation. Journal of Simulation,
10(2), 144–156.
Mara, M., Stein, J.-P., Latoschik, M. E., Lugrin, B., Schreiner, C.,
Hostettler, R., & Appel, M. (2021). User responses to a humanoid
robot observed in real life, virtual reality, 3D and 2D. Frontiers
in Psychology, 12, 633178.
Martı́nez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández-Orallo,
J., Kull, M., Lachiche, N., Ramı́rez-Quintana, M. J., & Flach, P.
(2019). CRISP-DM twenty years later: From data mining processes to data
science trajectories. IEEE Transactions on Knowledge and Data
Engineering, 33(8), 3048–3061.
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006).
A proposal for the Dartmouth Summer Research
Project on Artificial Intelligence, August 31, 1955. AI
Magazine, 27(4), 12–14.
McDermott, D. (2007). Artificial intelligence and consciousness. The
Cambridge Handbook of Consciousness, 117–150.
Mitchell, M. (1998). An introduction to genetic algorithms. MIT
press.
Modha, D. S., Ananthanarayanan, R., Esser, S. K., Ndirango, A.,
Sherbondy, A. J., & Singh, R. (2011). Cognitive computing.
Communications of the ACM, 54(8), 62–71.
Molnar, C. (2022). Interpretable machine learning.
Independently published.
Moor, J. (2006). The Dartmouth College artificial
intelligence conference: The next fifty years. AI
Magazine, 27(4), 87–91.
Newell, A., Shaw, J. C., & Simon, H. A. (1959). Report on a general
problem solving program. IFIP Congress, 256, 64.
Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial
intelligence for sustainability: Challenges, opportunities, and a
research agenda. International Journal of Information
Management, 53, 102104.
Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W.,
Vidal, M.-E., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis,
E., et al. (2020). Bias in data-driven artificial intelligence
systems—an introductory survey. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 10(3), e1356.
OpenAI. (2023). GPT-4 technical report. arXiv Preprint
arXiv:2303.08774.
Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., & Wu, X. (2024).
Unifying large language models and knowledge graphs: A roadmap. IEEE
Transactions on Knowledge and Data Engineering.
Penedo, G., Malartic, Q., Hesslow, D., Cojocaru, R., Cappelli, A.,
Alobeidli, H., Pannier, B., Almazrouei, E., & Launay, J. (2023). The
RefinedWeb dataset for falcon LLM: Outperforming curated corpora with
web data, and web data only. arXiv Preprint arXiv:2306.01116.
Pinar Saygin, A., Cicekli, I., & Akman, V. (2000). Turing test: 50
years later. Minds and Machines, 10(4), 463–518.
Qin, X., Luo, Y., Tang, N., & Li, G. (2020). Making data
visualization more efficient and effective: A survey. The VLDB
Journal, 29(1), 93–117.
Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H.
(2016). Generative adversarial text to image synthesis.
International Conference on Machine Learning, 1060–1069.
Rojas, R. (1997). Konrad zuse’s legacy: The architecture of the Z1 and
Z3. IEEE Annals of the History of Computing, 19(2),
5–16.
Rosenblatt, F. (1958). The perceptron: A probabilistic model for
information storage and organization in the brain. Psychological
Review, 65(6), 386.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A
modern approach (4th ed.). Pearson.
Schmidhuber, J. (2007). Gödel machines: Fully
self-referential optimal universal self-improvers. In Artificial
general intelligence (pp. 199–226). Springer.
Schreiner, M. (11 July 2023). GPT-4 architecture, datasets, costs
and more leaked. https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/.
Schröer, C., Kruse, F., & Gómez, J. M. (2021). A systematic
literature review on applying CRISP-DM process model. Procedia
Computer Science, 181, 526–534.
Seaborn, K., Barbareschi, G., & Chandra, S. (2023). Not only WEIRD
but “uncanny”? A systematic review of diversity in
human–robot interaction research. International Journal of Social
Robotics, 15(11), 1841–1870.
Sejnowski, T. J. (2023). Large language models and the reverse turing
test. Neural Computation, 35(3), 309–342.
Shafique, U., & Qaiser, H. (2014). A comparative study of data
mining process models (KDD, CRISP-DM and SEMMA). International
Journal of Innovation and Scientific Research, 12(1),
217–222.
Shanahan, M. (2016). The Frame Problem. In E. N. Zalta
(Ed.), The Stanford encyclopedia of philosophy
(Spring 2016). https://plato.stanford.edu/archives/spr2016/entries/frame-problem/;
Metaphysics Research Lab, Stanford University.
Shi, Z., Yao, W., Li, Z., Zeng, L., Zhao, Y., Zhang, R., Tang, Y., &
Wen, J. (2020). Artificial intelligence techniques for stability
analysis and control in smart grids: Methodologies, applications,
challenges and future directions. Applied Energy, 278,
115733.
Shneiderman, B. (2020). Human-centered artificial intelligence:
Reliable, safe & trustworthy. International Journal of
Human–Computer Interaction, 36(6), 495–504.
Siemens, G., Marmolejo-Ramos, F., Gabriel, F., Medeiros, K., Marrone,
R., Joksimovic, S., & Laat, M. de. (2022). Human and artificial
cognition. Computers and Education: Artificial Intelligence,
3, 100107.
Tan, X., Chen, J., Liu, H., Cong, J., Zhang, C., Liu, Y., Wang, X.,
Leng, Y., Yi, Y., He, L., et al. (2024). Naturalspeech: End-to-end
text-to-speech synthesis with human-level quality. IEEE Transactions
on Pattern Analysis and Machine Intelligence.
Turing, A. M. (1950). I.—Computing Machinery and
Intelligence. Mind, LIX(236), 433–460. https://doi.org/10.1093/mind/LIX.236.433
Van Engelen, J. E., & Hoos, H. H. (2020). A survey on
semi-supervised learning. Machine Learning, 109(2),
373–440.
Van Wynsberghe, A. (2021). Sustainable AI: AI for sustainability and the
sustainability of AI. AI and Ethics, 1(3), 213–218.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you
need. Advances in Neural Information Processing Systems.
Vinge, V. (1993). Technological singularity. VISION-21 Symposium
Sponsored by NASA Lewis Research Center and the Ohio Aerospace
Institute, 30–31.
Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., & Blum, M.
(2008). Recaptcha: Human-based character recognition via web security
measures. Science, 321(5895), 1465–1468.
Vorst, R. van der, & Kamp, J.-A. (2021). The importance of a free,
open, online technology impact cycle tool. EUNIS’21.
Wach, K., Duong, C. D., Ejdys, J., Kazlauskaitė, R., Korzynski, P.,
Mazurek, G., Paliszkiewicz, J., & Ziemba, E. (2023). The dark side
of generative artificial intelligence: A critical analysis of
controversies and risks of ChatGPT. Entrepreneurial Business and
Economics Review, 11(2), 7–30.
Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural
language communication between man and machine. Communications of
the ACM, 9(1), 36–45.
Wikipedia contributors. (2024a). History of artificial intelligence
— Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=History_of_artificial_intelligence&oldid=1238546461.
Wikipedia contributors. (2024b). Moore’s law —
Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=1250511271.
Wikipedia contributors. (2024c). Roy amara —
Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Roy_Amara&oldid=1237425964.
Wikipedia contributors. (2024d). Timeline of artificial intelligence
— Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Timeline_of_artificial_intelligence&oldid=1240226624.
Wikipedia contributors. (2024e). Wheat and chessboard problem —
Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Wheat_and_chessboard_problem&oldid=1238847142.
Wolfe, G. (1998). The book of the new sun. SFBC.
Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng,
K., Chang, G., Aga, F., Huang, J., Bai, C., et al. (2022). Sustainable
ai: Environmental implications, challenges and opportunities.
Proceedings of Machine Learning and Systems, 4,
795–813.
Wu, X., Zhao, H., Zhu, Y., Shi, Y., Yang, F., Liu, T., Zhai, X., Yao,
W., Li, J., Du, M., et al. (2024). Usable XAI: 10 strategies towards
exploiting explainability in the LLM era. arXiv Preprint
arXiv:2403.08946.
Yang, Li, & Shami, A. (2020). On hyperparameter optimization of
machine learning algorithms: Theory and practice.
Neurocomputing, 415, 295–316.
Yang, Ling, Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., Zhang, W.,
Cui, B., & Yang, M.-H. (2023). Diffusion models: A comprehensive
survey of methods and applications. ACM Computing Surveys,
56(4), 1–39.
Zha, D., Bhat, Z. P., Lai, K.-H., Yang, F., Jiang, Z., Zhong, S., &
Hu, X. (2023). Data-centric artificial intelligence: A survey. arXiv
Preprint arXiv:2303.10158.
Zhang, C., Zhang, C., Zhang, M., & Kweon, I. S. (2023).
Text-to-image diffusion models in generative ai: A survey. arXiv
Preprint arXiv:2303.07909.
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y.,
Zhang, B., Zhang, J., Dong, Z., et al. (2023). A survey of large
language models. arXiv Preprint arXiv:2303.18223.
Zhou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., Zhang, K., Ji, C.,
Yan, Q., He, L., et al. (2023). A comprehensive survey on pretrained
foundation models: A history from bert to chatgpt. arXiv Preprint
arXiv:2302.09419.
Copyright
De figuur van het landschap van AI van LFAI in 2 Uitdagingen: Het belang van wederzijds begrip is beschikbaar onder de Apache 2.0-licentie.